If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(24x^2)-640=0
a = 24; b = 0; c = -640;
Δ = b2-4ac
Δ = 02-4·24·(-640)
Δ = 61440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{61440}=\sqrt{4096*15}=\sqrt{4096}*\sqrt{15}=64\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64\sqrt{15}}{2*24}=\frac{0-64\sqrt{15}}{48} =-\frac{64\sqrt{15}}{48} =-\frac{4\sqrt{15}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64\sqrt{15}}{2*24}=\frac{0+64\sqrt{15}}{48} =\frac{64\sqrt{15}}{48} =\frac{4\sqrt{15}}{3} $
| 7(x+8)=147 | | (X-7)^2+(y+2)^2=40 | | 2(0.25x-3)=1.5-2 | | 27.5=12.33+3x | | X^2+(y-5)^2=7 | | 3(2x-1)=1/(2x-1) | | (3x+6)+(7x-14)=90 | | (3x+6)+(7x-14)+90=180 | | 2x-1(2x-1(3))=0 | | 2x-1(2x-1(3)))=0 | | 24=q8 | | (x-3)=2(3x-2) | | (4n+6)=60 | | 6(m+18)=2(m+5) | | 0.5(x-6)=20 | | (13x-4)+(6x+18)=90 | | 2(f−5)=12 | | 2(2x+4)=x+4x+7 | | 2(2m)-1=7 | | 2x=2.2-0.2 | | 11(2)+13y=83 | | 12=2(f−5) | | q+12=35 | | (2x)+(180-6x)=120 | | 8^x–9=5^2x–1 | | 9*u-2=18 | | 5(x^2+2)=2x^2+41 | | (4x)+(2x+30)=180 | | X^2+Y^2+13y=y-32 | | (x+5)^2+12=76 | | 3w+7=3w-5 | | 13^2=39x |